If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+389x+49=0
a = 10; b = 389; c = +49;
Δ = b2-4ac
Δ = 3892-4·10·49
Δ = 149361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(389)-\sqrt{149361}}{2*10}=\frac{-389-\sqrt{149361}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(389)+\sqrt{149361}}{2*10}=\frac{-389+\sqrt{149361}}{20} $
| x-5÷8= | | 3x+6.66=20 | | x-5÷8=-2 | | 5+4+3x=15 | | 4x-34=2(x-8) | | 2x+17=4x-7= | | -4k-2(5k(-6=-3k-39 | | X=y=12 | | -=4x=-9 | | 2/7x+12=6/4x-11 | | 4(2r-7)=6 | | 80+15m=350 | | 8x(+3)=48… | | 33n-208=320 | | -7.5+x=15.5 | | 10x+20=8x+26= | | 5(-3x+2)-2x=-111 | | 1+4/x=7 | | x^2-0.19x-1=0 | | 5x-7+4x+3=180 | | 7a=9+9a | | x6=140 | | 3t+2=-23 | | 7/9x=56/9 | | 5/2x=8-3/2x | | 2(3-x)=33 | | 0.20x+0.35(50)=22.5 | | x/3-3=x/9 | | -5x-25=5+25 | | H(t)=-16t+117t+5 | | f−8/9 =5/9 | | -1/2+2/3w=-5/7 |